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Abstract

Recently an extension of the frequency-domain subspace identification methods was developed that can
cope with arbitrary excitation signals and transient effects. In this paper the implications of this extended
model are investigated for the H1 estimator. It is shown that an extended model makes it possible to start
from frequency response functions (FRFs) without suffering from leakage, by modelling the initial
conditions of each data block used in the averaging procedure of the H1 estimator. In this way the
measurements can be averaged in order to reduce both the data set and the noise levels without introducing
bias errors caused by leakage phenomena. It is shown by both simulations and real-life measurements that
the presented approach improves the modal parameter estimates and in particular the damping estimates.
r 2005 Published by Elsevier Ltd.
1. Introduction

Frequency-domain system identification generally assumes that the input and output signals are
periodic or time limited within the observation time. This is necessary to guarantee leakage-free
spectra calculated through the discrete Fourier transform. Often in practice a window, e.g.
Hanning window, is used to reduce errors introduced by leakage phenomena, although it is
known that for short data sequences these windows introduce bias errors in the final estimated
parameters and in particular in the damping values.
see front matter r 2005 Published by Elsevier Ltd.
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In Ref. [1] it is shown for single input/single output (SISO) systems that by using an additional
‘transient’ polynomial in a rational fraction polynomial model, the ‘transient’ polynomial takes
into account the initial and final conditions of the experiment and the bias error due to leakage is
eliminated.
A generalization for multiple input/multiple output (MIMO) systems modelled by a common

denominator model is used in Refs. [2,3] to process short data sequences. In these references the
least-squares complex frequency (LSCF) domain modal parameter estimation method is
generalized to take into account the initial and final conditions. In Refs. [4,5] this idea is applied
for state-space frequency-domain models. In this present paper, that key idea is applied for
frequency-domain MIMO state-space models starting from frequency response function (FRF)
data. The frequency-domain subspace identification method in this paper is based on Refs. [6,7]
which is a frequency-domain counterpart of the deterministic time-domain subspace approach [8].
In Section 2 of this paper it will be briefly shown that the discrete Fourier spectra of the input

and output signals satisfy an extended state-space model that includes the initial and final
conditions of each state. In Section 3, this extended state-space model is further developed for the
identification starting from FRF data obtained by an H1 estimator [9]. Section 4 gives a brief
introduction and an overview of the subspace identification algorithm used for the identification
of the model, while Section 5 contains some general remarks. In Section 6, the theoretical results
are verified by means of simulations and the applicability of the method to solve complex
modelling problems is illustrated by means of a modal analysis experiment performed on a
subframe of a car.
2. State-space model for arbitrary signals

Consider a linear time-invariant state-space model. Assume that the input and output samples
are exactly known in the time interval [0; ðN � 1ÞTs] and unknown outside this time interval. The
discrete input un 2 RNi�1 and output yn 2 R

No�1 samples satisfy the following difference equation:

xnþ1 ¼ Axn þ Bun, (1)

yn ¼ Cxn þDun (2)

with xn 2 R
Ns�1 (Ns the number of states, Ni number of inputs, No number of outputs). The

discrete Fourier transformation X ðkÞ ¼ F ðxnÞ of signal xn is defined as

X ðkÞ ¼ F ðxnÞ ¼
1ffiffiffiffiffi
N
p

XN�1
n¼0

xnz�n
k ð3Þ

with zk ¼ ej2pk=N . Equivalent expressions can be obtained for the discrete Fourier transformation
of the signals un and yn as UðkÞ ¼ F ðunÞ and Y ðkÞ ¼ FðynÞ, with discrete Fourier transform F ð Þ
defined by Eq. (3). The discrete Fourier transform of xnþ1 is given by

F ðxnþ1Þ ¼
1ffiffiffiffiffi
N
p

XN�1
n¼0

xnþ1z
�n
k ð4Þ
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¼
zkffiffiffiffiffi
N
p

XN�1
n¼0

xnz�n
k þ

zkffiffiffiffiffi
N
p ðxN � x0Þ ð5Þ

¼ zkX ðkÞ þ
zkffiffiffiffiffi
N
p ðxN � x0Þ ð6Þ

with X ðkÞ defined by Eq. (3). Taking the discrete Fourier transform of Eqs. (1) and (2) leads to

zkX ðkÞ ¼ AX ðkÞ þ BUðkÞ þ BT
zkffiffiffiffiffi
N
p , (7)

Y ðkÞ ¼ CX ðkÞ þDUðkÞ (8)

with BT ¼ x0 � xN . This extension was introduced in Refs. [4,5] to describe state-space model in
the frequency-domain under the same assumption as time domain methods, although in many
identification methods the contribution of BT is neglected. A sufficient condition to let BT be zero
is that the initial and final conditions are equal, which is the case for periodic and time-limited
signals.
3. State-space model for FRF data

In case of arbitrary input signals the non-parametric H1 estimator is often used in modal
analysis [9,10] to estimate the FRFs.

H1ðokÞ ¼ GYU ðokÞGUU ðokÞ
�1

ð9Þ

with GYU ðokÞ ¼ ð1=NbÞ
PNb

b¼1Y bðkÞUbðkÞ
H and GUU ðokÞ ¼ ð1=NbÞ

PNb

b¼1UbðkÞUbðkÞ
H and Nb the

number of blocks in which the measured time data is divided. It can easily be proven that the H1

estimator is consistent if only noise (uncorrelated with the input signals) on the measured
responses yn is present and the variance, i.e. uncertainty on the estimated FRFs reduces
proportionally by 1=Nb. Starting from FRFs has the advantage that the initial data set is reduced
and the influence of the noise on the measurements is reduced by the averaging process. Although
in practise one has to deal with a trade-off between the variance and bias on the FRF estimate.
Given a data set with a limited amount of data, a choice must be made in the number of blocks. A
large number of blocks will result in a large reduction of the noise levels, but introduces a bias
error caused by the leakage, since a large number of blocks results in a small number of data
samples within a block. The use of window techniques, e.g. a Hanning window reduces the effect
of the leakage, but still significant bias errors are introduced, especially for low damped systems.
Our goal is to calculate an exact state-space model for the H1 estimator that takes into account

the initial and final conditions of each block. In this way both the data set and the uncertainty of
the FRFs can be reduced without introducing errors caused by leakage. Substituting Eq. (7) in
Eq. (8) leads to the following expression for block b:

Y bðkÞ ¼ CðzkI � AÞ�1BþD
� �

UbðkÞ þ CðzkI � AÞ�1BT ;b
zkffiffiffiffiffi
N
p . (10)
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Right multiplication by UH
b ðkÞ and summation over all Nb blocks results in

GYU ðokÞ ¼ CðzkI � AÞ�1BþD
� �

GUU ðokÞ þ CðzkI � AÞ�1½BT ;1 . . . BT ;Nb
�

zkffiffiffiffiffi
N
p U1ðkÞ

..

.

zkffiffiffiffiffi
N
p UNb

ðkÞ

2
666664

3
777775. (11)

Multiplying both sides of Eq. (11) by GUU ðokÞ
�1 leads to an exact parametric model for the H1

estimator.

H1ðokÞ ¼ CðzkI � AÞ�1½B BT ;1 . . . BT ;Nb
�

INi

T1ðkÞ

..

.

TNB
ðkÞ

2
666664

3
777775þD (12)

with TbðkÞ ¼ ð1=
ffiffiffiffiffi
N
p
ÞzkUbðkÞGUU ðokÞ

�1 and INi
a unity matrix of dimension Ni. This extended

FRF model clearly illustrates that the H1 FRF estimate is the sum of a deterministic contribution
CðzkI � AÞ�1 þD describing the structure under test and a stochastic contribution

CðzkI � AÞ�1½BT ;1 . . . BT ;Nb
�

T1ðkÞ

..

.

TNB
ðkÞ

2
664

3
775

introduced by the leakage (notice that T1ðkÞ has the same random behavior as UðkÞ). Only if
this stochastic contribution on the FRFs is taken into account by considering the initial
conditions BT ;b, no bias errors are introduced. Eq. (12) can be rewritten as a state-space
model

zkX ðkÞ ¼ AX ðkÞ þ B0U 0ðkÞ, (13)

H1ðokÞ ¼ CX ðkÞ þD (14)

with B0 ¼ ½B BT1 . . . BTNb
�, U 0

T
¼ ½INi TT

1 . . . TT
Nb
� and the state vector X ðkÞ 2 RNi�Ns . It is

important to notice that this extended state-space model fits the FRFs calculated by the H1

method exactly if a rectangular window is used (which is equal to not using a window).
Furthermore, each extra block i used by the H1 estimation introduces Ns extra parameters BTi in
the model, while the equivalent common denominator approach in Refs. [3,2] introduces NoNs

extra parameters in the model.
4. Subspace identification

In Refs. [7,6] frequency-domain subspace algorithms have been developed for discrete- and
continuous-time models. These methods have been successfully applied to real-life applications
such as modal analysis, flight flutter testing and the modelling of synchronous machines. This



ARTICLE IN PRESS

B. Cauberghe et al. / Journal of Sound and Vibration 290 (2006) 555–571 559
paragraph gives a short introduction and summary of a frequency-domain subspace algorithm to
identify the state-space models from FRF data with their extension to take into account the initial
and final conditions. The algorithm will be focussed on the state-space formulation (13) and (14).
A more profound study about deterministic, stochastic, combined deterministic-stochastic
frequency domain subspace identification and several practical applications can be found in
Ref. [11].
Recursive use of Eqs. (13) and (14) gives

z
p
kH1ðokÞ ¼ z

p�1
k ðCzkX ðkÞ þDzkÞ ð15Þ

¼ z
p�1
k CAX ðkÞ þ CB0U 0ðkÞ þDzkð Þ ð16Þ

..

.

¼ CApX ðkÞ þ ðCAp�1B0 þ CAp�2B0zk þ � � � þ CB0z
p�1
k þD0z

p
kÞU

0ðkÞ ð17Þ

with D0 ¼ ½D 0� and D0 a Ns �Ni þNb matrix. Writing Eq. (17) for p ¼ 0; 1; . . . ; r� 1 on top of
each other gives

H1ðokÞ

zkH1ðokÞ

..

.

zr�1
k H1ðokÞ

2
666664

3
777775 ¼ OrX þ G

U 0ðokÞ

zkU 0ðokÞ

..

.

zr�1
k U 0ðokÞ

2
666664

3
777775 (18)

with Or the extended observability matrix

Or ¼

C

CA

..

.

CAr�1

2
66664

3
77775 (19)

and G a lower triangular block Toeplitz matrix.

G ¼

D0 0 . . . 0

CB0 D0 . . . 0

..

. ..
. ..

. ..
.

CAr�2B0 CAr�3B0 . . . D0

2
66664

3
77775. (20)

Collecting Eqs. (18) for k ¼ 1; 2; . . . ;M with M the number of frequency lines in the chosen
frequency band results in

H ¼ OrXþ GU (21)
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with H a complex NoNr �NiM block Vandermonde matrix and U0 a complex ðNi þNbÞNr �

NiM block Vandermonde matrix defined by

H ¼

H1ðo1Þ H1ðo2Þ . . . H1ðoMÞ

z1H1ðo1Þ z2H1ðo2Þ . . . zMH1ðoMÞ

..

. ..
. ..

. ..
.

zr�1
1 H1ðo1Þ zr�1

2 H1ðo2Þ . . . zr�1
M H1ðoMÞ

2
6666664

3
7777775
,

U ¼

U 0ðo1Þ U 0ðo2Þ . . . U 0ðoMÞ

z1U
0ðo1Þ z2U

0ðo2Þ . . . zMU 0ðoMÞ

..

. ..
. ..

. ..
.

zr�1
1 U 0ðo1Þ zr�1

2 U 0ðo2Þ . . . zr�1
M U 0ðoMÞ

2
6666664

3
7777775

and X a complex Ns by ðNi þNbÞM matrix defined by

X ¼ X ð1Þ X ð2Þ . . . X ðMÞ
� �

.

Eq. (21) is converted in a set of real equations

Hre ¼ OrrX
re þ GUre, (22)

where ð Þre locates the real and imaginary parts beside each other, for example

Hre ¼ ½ReðHÞ ImðHÞ�. (23)

Eq. (23) with r larger than the model order Ns is the basic equation in frequency-domain subspace
identification. Frequency-domain subspace identification algorithms are basically a four-step
procedure. First, form the data matrices Hre and Ure. Next, by using a QR-factorization, followed
by an singular value decomposition the estimation of the extended observability matrix Or takes
place in an numerical efficient way [12].

Ure

Hre

� �
¼

RT
11 0

RT
12 RT

22

" #
QT

1

QT
2

" #
, (24)

RT
22 ¼ USVT. (25)

An estimate of Ôr for model order Ns is given by

Ôr ¼ U ½:;1:Ns�. (26)
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In a third step an estimate of A and C from Ôr in a least-squares sense is given by

Â ¼ Ô
þ

½1:Noðr�1Þ;:�
Ô½Noþ1:Nor;:� and Ĉ ¼ Ô½1:No;:�. (27)

In the fourth and last step the system matrixes B0 and D given the estimates Â and Ĉ are estimated
in a least-squares sense from

H1ðokÞ ¼ ĈðIzk � ÂÞ�1B0U 0ðkÞ þD. (28)
5. Remarks
�
 From the A, B, C and D matrices the modal parameters as natural frequencies, damping ratios,
mode shapes and participation factors can easily be recovered by a eigenvalue decomposition
[13].

�
 Since a transient is simply the output of a system caused by initial conditions of the states
different from zero, the model proposed by Eqs. (7) and (8) has exactly the same form as the
model valid for periodic excitations corrupted with transients. Notice that the model matrices A
and C can be estimated from transient signals only, if the input signals U are zero. Thus from
transient responses only both the natural frequencies as mode shapes can be recovered. The B
and D system matrices disappear in that case from the model in Eqs. (7) and (8).

�
 The exponential decay (stable system) of the transients in the outputs depends on the damping
of the system. Therefore, lightly damped systems are more sensitive to errors due to leakage and
transients than highly damped systems. So, in case of lightly damped systems, it is advised to
use the extended state space formulation to avoid large errors on the damping ratios of the
system.

�
 Notice that the extended formulation of the frequency-domain state-space model introduces Nb

extra inputs in the first equation of the model respectively Eq. (7) in the case of input–output
data and Eq. (14) in the case of FRF data. Furthermore, this extended model can be used to
model only transient responses of a system in case no input signal is applied. Notice that from
these transient responses both the A and C matrices can be obtained. In applications like model
analysis these system matrices contain the natural frequencies, damping values and mode
shapes.

�
 The covariance matrix of the disturbing noise can be used as a weighting in the algorithm to be
consistent [7]. In Ref. [14] it is proven that this still holds if the true covariance matrix is
replaced by the covariance matrix obtained from a small number of averaged blocks.

�
 In modal analysis, time-domain algorithms often start from Impulse Response Functions (IRF)
from FRFs. These IRFs are often estimated, e.g. by a H1 estimator (to reduce the noise)
followed by an inverse discrete Fourier transform. As a result, such a time-domain approach
suffers from the leakage in the FRFs and thus in the IRFs. The proposed identification
procedure in this article allows to start the identification from FRF data without suffering from
any errors introduced by leakage phenomena.
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6. Simulation and real measurement examples
6.1. Noise-free simulations

The goal of this simulation is to illustrate that model (13) and (14) is exact without any
approximation and that neglecting the influence of leakage can lead to large uncertainties on the
estimated models.
A sixth-order MIMO discrete-time domain system is excited with Gaussian white noise. The

A;B;C and D matrices used for the simulation are given in the appendix. Two different Monte
Carlo tests (100 runs each) with different number of time samples N ¼ 4096 and 1024 are
performed. The respectively 4096 and 1024 simulated time samples of the output and input signal
are divided in 4 equal data blocks of respectively 1024 and 256 time samples. No disturbing noise
is added to the signals in order to focus the simulation study on the errors introduced by leakage.
In each of the 100 runs of both Monte Carlo tests the simulated data is processed in two different
ways:
�

Ta

M

f ex

0.1

0.2

0.3
Classic state-space model (CSSM): The spectra of the 4 data blocks (Nb ¼ 4) are calculated by
using a Hanning window to reduce the effect of leakage. In a next step the FRFs are estimated
by the H1 non-parametric estimator (9). In the last step a state space model (Ns ¼ 10) is fitted
through the FRF data by using the frequency-domain subspace approach.

�
 Extended state-space model (ESSM): The spectra of the 4 data blocks are calculated by using a
rectangular window. In a next step the FRFs are estimated by the H1 non-parametric
estimator. In the last step an extended state space model (13) and (14) (Ns ¼ 10) is fitted
through the FRF data by using the proposed frequency-domain subspace approach.

Assume the sample rate to be 1Hz and thus the Nyquist frequency 0.5Hz. The poles pc in the
continuous time domain are given by the logarithmic function pc ¼ logðpzÞ of the discrete time-
domain poles pz. The model used for the simulation has three complex conjugate pairs of poles.
The natural frequency and damping ratio are respectively defined by f ¼ o=ð2piÞ and
d ¼ s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ o2
p

100 ðin %Þ with pc ¼ �sþ jo. Tables 1 and 2 show respectively the results of
the Monte Carlo simulations with 4096 and 1092 time samples. The relative error Da of a
parameter a is defined by stdðaÞ=meanðaÞ with std the standard deviation over the 100 runs.
Using the classic state-space model Table 1 shows the that the relative error of the natural

frequencies is lower than 1%, but the damping ratio suffers from larger errors (up to 28%),
ble 1

onte Carlo simulation 1 (4096 samples)

act ð%Þ dexact ð%Þ Classic model (%) Extended model (%)

Df Dd Df Dd

3 0.49 0.2740 28.6313 0.0000 0.0005

5 0.89 0.0334 3.8505 0.0000 0.0010

3 1.16 0.0126 2.1087 0.0000 0.0066
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Table 2

Monte Carlo simulation 1 (1024 samples)

f exact ð%Þ dexact ð%Þ Classic model (%) Extended model (%)

Df Dd Df Dd

0.13 0.49 1.3398 68.9488 0.0000 0.0070

0.25 0.89 0.4868 34.8320 0.0001 0.0081

0.33 1.16 0.1500 14.7810 0.0001 0.0179

B. Cauberghe et al. / Journal of Sound and Vibration 290 (2006) 555–571 563
although the processed time series are relatively long. In particular the low-frequency poles suffer
from large errors, since they are more sensitive for errors due to leakage phenomena. When the
same simulated time series are processed by modelling an extended state-space model, which takes
into account the initial and final conditions the errors decrease drastically below 0.01%, which is
the level of the computational errors. Table 2 shows that the errors increase a lot by decreasing the
number of time samples from 4096 to 1024 when a classic state-space model is used, while the
proposed extended model still results in very accurate estimates. The FRFs contain only 128
spectral lines in this second Monte Carlo simulation. Fig. 1 illustrates the H1 estimate from the
four blocks of 256 samples with a Hanning window, the synthesized FRF of the classic state-space
model and the exact FRF. Although the H1 estimate of the FRF looks acceptable compared to
the exact FRF, the synthesized FRF does not fit the exact FRF due to the model errors caused by
the leakage. The H1 estimate with a rectangular window in Fig. 2 looks worse compared to the
FRF obtained by using a Hanning window, although the synthesized FRF from the extended
state-space model perfectly fits the exact FRF since the initial and final conditions of each block
are properly taken into account.
6.2. Noise-corrupted simulations

In a second set of simulations the response measurements yðnÞ are corrupted by colored noise
yrðnÞ. For each of the 100 Monte Carlo runs the ‘4096’ time samples are processed by the CSSM
and ESSM approach for different numbers of blocks used in the H1 FRF estimation. The mean
square error (MSE) of the damping ratios from the 100 Monte Carlo runs is calculated as the

MSE ¼
1

100

X
i¼1

ðd̂ i � deÞ
2 (29)

with d̂ i the estimated damping ratio and de the exact damping ratio. The mean square error is
equal to the sum of the variance and square of the bias.
Fig. 3 clearly shows the trade-off between variance and bias for the CSSM approach. The

classical H1 approach reduces the noise levels on the FRFs by averaging, but the bias due to
leakage increases by decreasing the blocks length. Based on this trade-off the user has to the define
the number of blocks. Notice that the optimal number of blocks not known a priori and depends
on the total measurement time and the modal density in the measurements. The ESSM approach
clearly improves the quality of the estimates from this noise data, since the noise is reduced
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Fig. 1. Comparison between the exact FRF (dotted line), H1 FRF estimate by using a Hanning window (n) and the

synthesized FRF for the CSSM model (full line).
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without introducing bias errors due to leakage. In this way the MSE reduces and becomes much
less dependent of the number of blocks.

6.3. Real measurement example

Fig. 4 shows the measurement setup to perform a modal analysis of an engine subframe. Two
shakers excite the structure with a random force. A sample rate of 2048Hz is used and 256K
Fig. 4. MIMO measurement setup of an engine subframe of a car.

Table 3

Natural frequencies and damping ratios of the subframe

f ref f ESSM f CSSM dref dESSM dCSSM

129.5 129.5 130.3 0.122 0.116 0.202

147.8 147.9 148.1 0.081 0.081 �0.002

175.9 176.3 176.0 1.138 1.118 0.208

205.6 205.6 204.8 0.106 0.112 0.110

241.0 241.0 241.4 0.115 0.110 0.160

252.9 252.9 253.0 0.095 0.091 0.102

286.3 286.3 286.7 0.221 0.224 0.291

291.2 291.5 – 1.006 0.801 –

329.3 329.3 329.6 0.164 0.164 0.214

331.3 331.3 331.3 0.130 0.134 0.277

356.1 356.1 355.8 0.099 0.099 0.212

359.7 359.7 359.5 0.101 0.101 0.306

379.7 379.7 379.8 0.142 0.143 0.061

402.6 402.6 402.3 0.098 0.097 0.148
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(1K ¼ 1024) samples are measured. First all 256K time samples of both acceleration and force
measurements are divided in 8 long blocks resulting in a frequency-domain resolution of
0.0156Hz. Since the length of these blocks is very long (64K), the spectra and the calculated FRFs
are considered as leakage free and as a reference. These leakage-free FRFs lead to the reference
modal parameters. Next only the first 8K data samples are used and divided in 4 equal blocks of
each 2K samples resulting in a frequency resolution of 1Hz. First the FRFs are calculated by the
H1 method with a Hanning window. From these FRFs a classic state-space model is estimated
with a frequency-domain subspace method. Secondly the same 4 blocks of data are used to obtain
the FRFs with a rectangular window. These FRFs are processed to estimate an extended state-
space model. Table 3 shows the good agreement between the natural frequencies and damping
ratios obtained from the reference FRFs and the estimates derived from the short data sequences
with the ESSM approach. The use of a Hanning window and a classic state-space identification
clearly results in poor estimates, especially the damping estimates.
A typical tool in commercial modal analysis software to distinguish mathematical poles from

physical poles is a stabilization diagram. This diagram shows the estimated poles for different
model orders. Fig. 5 shows the stabilization diagram for both the CSSM approach and the ESSM
approach. Although the ESSM approach does not use a Hanning window and as a result the FRF
looks much noisier, all the poles clearly appear in the stabilization diagram. The CSSM approach
suffers from estimating double poles, where only one physical pole is present e.g. around 129, 205,
286 and 380Hz. This is typically caused by leakage phenomena and makes the stabilization
diagram confusing for the end-user. Finally, Fig. 6 compares the synthesized FRFs of both
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Fig. 6. Comparison between the reference FRF (full line), the synthesized FRF from the CSSM model (�) and the

synthesized FRF from the ESSM model (n).
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approaches with the reference FRF from the leakage free measurement. One concludes that
although the extended model approach started from only 8K data samples, averaged in 4 blocks
of 2K samples, still a very good agreement is found between the model and the reference FRFs,
while a classic approach clearly fails due to errors introduced by leakage.
7. Conclusions

This paper shows how frequency-domain state-space models for FRF data can handle arbitrary
input signals and transients without introducing systematic errors. Adding the initial and final
conditions of the states for every data block in the state-space model allows to identify discrete-
time models in the frequency domain without any approximation. This allows to reduce the initial
data set and the uncertainty on the final parameters without introducing a bias caused by leakage.
A frequency-domain subspace algorithm was applied to identify the state-space matrices together
with initial/final conditions of each block. The presented method improves the modal parameter
estimates and especially the damping ratio estimates. Furthermore, the final estimates of the
parameters are much less dependant from the number of blocks averaged for the estimation of the
FRFs. The proposed method is evaluated by both a simulation and a real-life measurement
example.
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Appendix

Simulation model:

A ¼

0:6541 �0:8108 �0:0009 �0:0042 0:0003 0:0018

0:6977 0:6512 0:0004 0:0031 �0:0001 �0:0013

�0:0007 0:0050 �0:0211 �1:0106 0:0131 �0:0436

0:0001 �0:0001 0:9599 �0:0270 �0:0079 0:0165

�0:0003 0:0019 �0:0118 �0:0442 �0:4961 0:9079

0:0002 �0:0016 0:0027 0:0176 �0:7944 �0:4636

2
666666666664

3
777777777775
,
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B ¼

�0:0018 �0:0025

0:0010 0:0014

�0:0014 0:0000

0:0004 �0:0000

0:0007 �0:0010

�0:0001 0:0002

2
666666666664

3
777777777775
,

C ¼

�0:1735 �0:0301 �0:2569 0:0922 0:1920 0:0696

�0:2453 �0:0435 �0:0054 �0:0114 �0:2753 �0:0786

�0:1736 �0:0318 0:2650 �0:0744 0:1976 0:0408

2
664

3
775,

D ¼

0:1327 �0:0085

�0:0085 0:1322

�0:0006 �0:0085

2
664

3
7751:0e� 003.
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